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Two-dimensional flow of a second-order fluid near a stagnation point occurring 
on a flat plate which is performing harmonic oscillations in its own plane is 
considered. The equations have been integrated by the Kkmh-Pohlhausen 
method for small values of w,  the frequency of the oscillation of the plate, and 
the W.B.K. method is applied to solve the equations for high values of w. The 
velocity profile within the boundary-layer region and the shearing stress on the 
plate have been obtained in both the cases. The oscillation of the shearing stress 
has a phase lead over the oscillation of the plate. This phase lead decreases with 
increase of the second-order effect for small values of w. 

1. Introduction 
Two-dimensional flow of a viscous incompressible fluid near a stagnation point 

has been discussed by Howarth (1935). The stagnation point occurs at  x = y = 0, 
the flow being parallel to the y-axis at  infinity and impinging perpendicularly on 
a flat plate placed along y = 0. Rott (1955) has discussed this problem when the 
plate (y = 0) performs harmonic oscillation in its own plane, i.e. in the x-direction, 
while the flow at y + 00 remains steady. The flow depends upon a dimensionless 
number K = w/a,  where w is the frequency of the oscillation of the plate and a is a 
constant depending on the flow at infinity. He obtained an exact solution for the 
case K < 1 and solved the equations for the case K $ 1 by a method suggested by 
Wentzel (1926), Brillouin (1926) and Kramers (1926) which is known as the 
W.B.K. method. In  both the cases the oscillation of the shearing stress on the 
plate has a phase lead over the oscillation of the plate. 

The constitutive equation of an incompressible second-order fluid has been 
given by Coleman & No11 (1960) as 

rii is the stress tensor, vi and ui are the velocity and acceleration vectors 
respectively, pl, p2 ,  p3 are material constants and p is an indeterminate hydro- 
static pressure. The tensors e$ and e8) are known as the first and second rate- 
of-strain tensors. Solutions of poly-iso-butylene in cetane behave as second- 
order fluid and these material constants have been determined experimentally by 

3 Fluid Mech. 24 



34 A .  C. Srivastava 

Markovitz & Brown (see Truesdell 1964). For a 5.4% solution of poly-iso- 
butylene in cetane it is found that p = 18.5 poises, ,uz = -0*2g/cm and 
,u3 = l.Og/cm. Rajesliwari & Rathna (1962) have solved Howarth's above- 
mentioned problem for this fluid. Using their results Sharma (1964) has solved 
the flow near a stagnation point when the main stream outside the boundary 
layer oscillates in magnitude but not in direction, i.e. the problem solved by 
Lighthill (1954) for the Newtonian fluid (which can be called a fist-order fluid). 
In  this paper the problem discussed by Rott (1955) is solved for a second-order 
fluid. The equations have been integrated by the KBrmAii-Pohlhausen method for 
K < 1 and by the W.B.K. method for K 9 1. The velocity distribution within the 
boundary-layer region and the shearing stress on the plate are obtained in both 
the cases. The results obtained in this paper can be directly applied to the case 
when the dividing streamline of the oncoming stream oscillates in position and 
the plate is at  rest by superposing a uniform (though not a constant) transverse 
velocity. 

It has been found by the author in an unpublished paper that equation (8) of 
this paper remains unchanged and the variation of the pressure in the direction 
of y can be neglected even if the x-axis is taken along any plane curve and the y- 
co-ordinate as the distance from this curve. Hence using the results obtained in 
this paper and those obtained by Sharma (1964), and applying the arguments 
given by Glauert (1 956), the following two-dimensional oscillatory motions can 
be discussed in second-order fluids: 

(i) a cylinder of arbitrary cross-section is fixed in the fluid and the stream 
oscillates in magnitude; 

(ii) the cylinder is fixed and the stream oscillates in direction; 
(iii) the stream is constant and the cylinder oscillates in the stream direction; 
(iv) the stream is constant and the cylinder oscillates in the transverse 

direction; 
(v) the stream is constant and the cylinder oscillates about its axis. 
Following Glauert (1956), a quantitative estimate of the torque on a circular 

cylinder making small transverse oscillations in a constant stream of second- 
order fluid can be made by using the results obtained in this paper. This torque 
is a function of pl  and pz. The value of the constant p1 can be calculated by any 
steady-state viscometer . By measuring the torque experienced by the cylinder 
in such a motion, experimentally, it  may be possible to determine the constant 
p2 for the material. 

2. Equations of motion 
Consider EL plane potential flow parallel to the y-axis at infinity impinging on 

a flat plate (y = 0 )  which is performing harmonic oscillations of the type b cos ot. 
The velocity components for the potential flow at infinity in the directions of x 
and y are respectively 

Denoting by u and v the velocity components in the directions of x and y respec- 
tively at any point of the fluid, we assume 

( 5 )  

U = ax, V = -ay. (4) 

u = a5f'(a) + b Re[ei"b(a)l, v = - (a%)+,m), 
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where = p(a/vl)&, v, = pJp, p is the density of the fluid and a prime denotes 
differentiation with respect to 7. f is a real function, but g is complex. The 
boundary conditions of this problem in terms off(y) and g(7) are 

Further, to ensure that the solution passes over smoothly to that of the potential 
flow at infinity, we assume 

(7) 
f"(r) -+ 0, f "'(11) --f 0, f'"(.??) -+ 0, 

g'(7)  -+ 0, g"(7) + 0, g"'(11) + 0 as 7 --f co. 

Two-dimensional boundary-layer equations for the fluid governed by the con- 
stitutive equation (1) have been derived by the author (unpublished) by taking 
v,, v2 and v3 of the order 62 (6 being the boundary-layer thickness) as 

a aY [P-(2v2+v3) P (31 - 0(6), (9) 

where v2 = p2/p, v3 = p3/p. Substituting the velocity components from (4) and 
(5) in equation (8) and equating the coeficient of x and the coeficient of eiul on 
both sides of the equation thus obtained, we have 

iKg + gf '  - g'f- 9'' - CL(iKgn f gf "' - g'f " +q"f' - g"f) = 0, 

f ' 2 - f l f K - f / i ' -  1 -a(2ff'f'/'_f"Z_fliv) = 0, 

(10) 

(11) 

where a = ap,/p,. Equation (1 1) has been solved by Rajeshwari & Rathna (1962) 
for positive as well as negative values of p2. They have integrated the equations 
by the KkmAn-Pohlhausen method by assuming the following form off(c); 

f (c) = 0.125( 106, - 3 ~ ~ 3 )  c2 + c1.3 c3 - 0.125( 106, + 9aJ c4 
+ 0 - 2 0 0 ( 3 ~ 3 + 5 6 1 ) ~ 5 - 0 ~ 1 2 5 ( ~ , + 2 6 1 ) ~ 6 ,  

where 5 = q/a17 6, = 6(a/v1), 6 being the boundary-layer thickness. This form of 
f (c)  satisfies all the boundary conditions (6) and (7) and the constants a3, 6, have 
been determined from the momentum integral equation and from the condition 
that equation ( 1  1) is satisfied at  5 = 0. The values of a3 and 6, are given in 
table 1 for a = 0, - 0.1, - 0.2. Markovitz & Coleman (1964) have shown from 
thermodynamic considerations that p2 should be negative. Markovitz and Brown 
have determined experimentally this material constant for solutions of poly- 
iso-butylene in cetane of various concentration and found it to be negative (see 
Truesdell 1964). Hence in this paper we shall only consider negative values of p2. 

3-2 
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3. The low-frequency case 

i.e. when K < 1, we expand g(y) in powers of i~ as 
When the frequency of the oscillation of the plate is small compared with a, 

g ( r )  = go(7) + iKgl(7) + (# g * ( r )  + -. - 9 (12) 

substituting (12) in (10) and equating the coefficient of i~ and terms independent 
of it to zero, we get 

go f ’  - g;, f - 9;; - a(go f - g;, f ” + g;;y - ggf ) = 0, 

go + g, f ’  - g; f - $7; - a(g;; + g, f lrl - g;f” + gl” f ’ - 9: f )  = 0. 

(13) 

(14) 

Differentiating (1 1) with respect to 7 yields 

The function g o ( v )  has been plotted against 7 for a = 0, - 0.1, - 0.2 in figure 1. 
The function go(7) decreases with increase of ( - a) for any particular value of 7. 
Changing the variable from 7 to 5, (14) reads as 

6,”go+6f(g,f’-g‘f)-s,g‘;-a(S,g,”+g,f“-g;g;f”+g’;f‘-g~~’f) = 0, (16) 

where now a prime denotes differentiation with respect to the new variable 5. 
Integrating (16) with respect to g from 0 to 1 and using (15), we have 

Supposing that the boundary conditions satisfied by gl(r) as 7 -+ co are satisfied 
at the edge of the boundary layer, we write 

(18) 1 gl(Q = 0 a t  5 = 0; 

Sl(5) = d ( 5 )  = d ( 5 )  = g?(5) = 0 at 5 = 1- 

Equation (16) gives 

6; - 6gl”(O) - a{6,f’”(o)/f”(o) - g ; ( o ) f ” ( o ) }  = 0. (19) 

We assume that Sl(5) = (1 - !34 (AC+BP). (20) 

The above form of gl(<) satisfies all the conditions of (18) and satisfies (17) 
and (1 9) if 

6,” + ( S A  - 2B) 6, + a{12( 106, + 9aJ/( 106, - 3 4  + &( 106, - 3a3) A }  = 0, (21) 

A(2630.001 151a3 - 0~0192006,) + a(0*185339a3 - 0.4814016,)} 

+B{26f(0.000218a3- 0.0067476,) +a(0.024110a3- 0.1428566,)) 

= - S A  -4(6,P- 6a6,a3)/(106- 3a3). (22) 

Knowing 8, and a3 from the solution of the steady case equations (21) and (22) 
give A and B. The values of A and B are given in table 1 for a = 0, - 0.1, - 0.2 
and the function gl(q) has been plotted against 7 for these values of a in figure 1. 
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The maximum value of gl(v) increases with increase of ( -a).  The graph of both 
functions g,(y) and g,(y) for a = 0 agrees closely with the corresponding ones of 
the exact solution obtained by Rott (1955). The unsteady part of the shearing 
stress on the plate is given by 

Re[p(av,)*b eiWt{g'(0) (1 + i a ~ )  + af'(O)}], (23) 

a 4 a3 A B tan r j  

0 3.0332 - 4'6051 - 1.6364 - 1.9456 0 . 6 5 3 7 ~  
- 0.1 2.5144 - 2.7022 - 1.5160 - 2.6582 0 . 5 7 8 3 ~  
- 0.2 2.0012 - 2.0448 - 1.4810 - 3.4749 0 . 4 3 7 0 ~  

TABLE I 

0 1 a 0  2-0 3.0 
r 

FIGURE 1. First two terms of an approximation to  the unsteady velocity 
profile, as functions of 7. - - - 9 go(v); -9  SAT) .  

which shows that the oscillation of the shearing stress has a phase lead # over the 
oscillation of the plate given by 

This phase lead has been calculated for CI = 0,  - 0.1, - 0.2 and is given in table 1. 
The second-order effects reduce the phase lead. 
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4. The high-frequency case 

value of a, i.e. K 

When the frequency of the oscillation of the plate is high compared with the 
1, the W.B.K. method is appropriate. In  equation (10) we put 

( 2 5 )  

iK +f’ - f S - S2 - S’ - a ( i K ( s 2  + 8’) +f’” - Sf” (8’ f S ’ ) f ’  -f(S” + 38s‘ + S’)} = 0. 

(66) 

The value of p2/p1 is small and negative for most of the fluids which behave as 
second-order fluids, say it is - 0.02667 for a 6.8 % solution of poly-iso-butylene in 
cetane (see Markovitz & Coleman 1964). Taking a to be of the order of 1 / ~ ,  
we put CCK = - m in equation (26) and assume 

S(7) = So(7) kg + Sl(7) + S2(y) K-+ + S3(7) KP1 + . . . . (27) 

Putting (27) in (26) and equating like powers of K ,  we get 

i - ( l - im)s ;  = 0, 

2s1( 1 - im) +f( 1 + ms;) = 0, 

f‘( 1 + ms!) -is1( 1 - 3m4) - (1 - im) (8; + 28, s1 + 8;) = 0, 

(29) 

(30) 

f ~ 2  + (1  - im) (280 83 + 28, s2 + 8;) - mso{ - f ” + 2sJ’ + 3f(s; + 383) = 0. (3 1) 

From (28) it  is clear that so(y) is constant, helice &(q) has been omitted in writing 
the equations (29)-(31). 

The solution of the equations (28)-(31) is 

so(y) = (1+m2)-f{cos(e+g7~)+isin(8+ in)}, (32) 

sl(7) = - {2(  1 + m2)}-1 (cos 48 + i sin 48)f’(7), 133) 

s,(y) = 0.75(1 +m2)-%{cos (38-in)  +isin(38-&r)}f’(q) 

+ 0.125(1 +m2)-)  [(cos (719- 4.1 + 8msin (78- in)} 

+i{sin(78-~7~)-8mcos (78-&r)}]f2(7) ,  (34) 

where 8 = 8tan-lm. The expression for ~ ’ ( 7 )  is complicated but the coefficient 
off”(y) in the expression is given by 

0*125( 1 +m2) { - l l m  + i (3  - 8m2)}. 

The unsteady part of the shearing stress on the plate in terms of s(7) and m is 
given by 

p(uv$ b ei” l [s(o) (1 - im) - (m/~)f”(~)] 

= p(avl)h b eio‘[( 1 + m2)-~{cos  (8  + $ 7 ~ )  + i sin (8 + an)} K* 

- (2%+0-375i) ~ - ‘ f ” ( 0 ) ] .  (35) 
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Hence in this case the phase lead q5 of the oscillation of the shearing stress on the 
plate over the oscillation of the plate is given by 

In this case no comment can be made about the relation of tan 4 and m, for it 
involves powers of K$. All the expressions reduce to the corresponding expressions 
of Rott for CI. = 0. 
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